J. DIFFERENTIAL GEOMETRY
15 (1980) 543-551

EXAMPLES OF CODIMENSION-ONE CLOSED
MINIMAL SUBMANIFOLDS
IN SOME SYMMETRIC SPACES. 1
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1. Introduction

In the study of Riemannian geometry, the symmetric spaces constitute a
natural family of nice testing spaces. They are characterized by a single neat
property of being “symmetric with respect to any point” and, rather remark-
ably, can be classified via the structure-classification theory of semi-simple
Lie groups [E. Cartan]. Therefore the study of geometry of submanifolds in
symmetric spaces is a natural generalization to that of spaces of constant
curvature which provides an ideal setting for in-depth investigation of the
interaction between geometry and Lie group theory. However, such problems
have been so far almost left unexplored. Hence let us begin with formulating
some simple problems along the above lines.

In the case of compact symmetric spaces, the spheres S” is one of the
simplest and also the most well understood of Riemannian manifolds. Among
all submanifolds of a given dimension 1 < r < # — 1 in §", the equator S” is
clearly the simplest and the “best” one. Therefore it is natural to pose the
following problem

Problem 1. Let M" be a given compact symmetric space. Among all
r-dimensional submanifolds of M”, 1 <r < n — 1, which one is the “sim-
plest” and the “best” that one may consider it to be the “generalized
r-dimensional equator” in M"?

Of course, the above problem is as yet not precise because the “simplicity”
and the “virtue” of submanifolds is, in fact, purely a matter of taste.
Therefore one may adopt different “standards” to get possibly different
generalized equators. For example, it is not too difficult to prove that the
r-dimensional equator $” is the unique closed r-dimensional minimal sub-
manifold with the least total (r-dimensional) volume. Therefore the following
precise problem is a natural variant of problem 1.
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Problem 2. Let M”" be a given compact symmetric space. For a given
dimension r, 1 < r < n — 1, determine those closed r-dimensional minimal
submanifolds with the least total volume.

In order to answer problems of the above type, the first step will be to find
some simple examples of closed minimal submanifolds for each given dimen-
sionr, 1 <r <n— 1,in a given symmetric space M", they will then serve as
“candidates” as well as “basis” for comparison or uniqueness type of theo-
rem. Among examples of closed minimal submanifolds, those codimension-
-one examples are much harder to find and hence more interesting.

Problem 3. Let M" be a given compact symmetric space. To find some
simple examples of closed codimension-one minimal submanifolds.

The purpose of this paper is to construct some examples of closed codimen-
sion-one minimal submanifolds in some symmetric spaces of rank two follow-
ing the formulation of [3]. One of the cases we study is the symmetric space
E,/F,. Under the isometric action of F, on the above 26-dimensional
symmetric space, the principal orbit type is F,/Spin(8), and the orbit space is
topologically a triangle. The general formulation of [3] asserts that one can
equip the orbit space F,\ Eg/F, with a specific Riemannian metric by
computing the distances between orbits and the 24-dimensional volume of
orbits. Then the study of F,-invariant codimension-one closed minimal sub-
manifolds in Eg/F, can be reduced to the study of “closed” geodesics (may
be closed by perpendicular to the boundary). By proving the existence of
periodic solutions of certain specific ordinary differential equations on a
triangular domain we are able to construct an F,-invariant closed codimen-
sion-one minimal submanifold of the topological type of S! x (F,/Spin(8))
in Eq/ F,. Moreover, the inverse image of the above submanifold in Eq is a
codimension-one closed minimal submanifold in E4 of the topological type of
S! % (F,/Spin(8)) X F,. They are respectively the first examples of closed
codimension-one minimal submanifolds in Ez;/F, and E,. In the case of
sphere we also obtain some new examples of minimal imbedding of S' X
Sl x §*71x §"~linto §*~ ! eg, T* c S°.

2. Orbit structures and construction of invariant closed minimal
submanifolds of codimension one
In this section we shall make some explicit computations of the geometry
of orbit structure of the K-action on a given symmetric space G/K. For
simplicity, we shall assume that G/ K is simply connected, the general case
can easily be reduced to the simply connected case by lifting to its universal
covering. In order to study extremals of K-equivariant variation of the
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volume functional, the geometric structure which one needs consists of the
following:

(i) A metric on the orbit space K\ G/K which measures the distance
between orbits.

(ii) A volume function defined on the orbit space which records the volume
of principal orbits (its values on orbits of lower dimensions are defined to be
Zero).

Let us first recall the well-known case of compact connected semi-simple
Lie group G considered as a symmetric spaced G X G/AG where AG =
{(g.87"); g € G} actson G~ G X G/AG via conjugations. In this case, the
maximal tori theorem of E. Cartan asserts that the principal orbit type is
G/T. (In fact, historically, principal orbit type theorem of Montgomery-
Samelson-Yang is a generalization of maximal tori theorem.) Let T be an
arbitrary but fixed maximal torus of G, and W = N(T)/ T the Weyl group of
G. Then the geometry of orbit structure of the adjoint G-action on itself, i.e.,
the geometry of conjugacy classes, can be concisely described as follows:

(i) The fixed point set of T is T itself, i.e., F(T, G) = T, and is a flat totally
geodesic submanifold which intersects every orbit.

(ii)) T c G induces a bijection T/W = G/Ad (the space of conjugacy
classes), and W acts on T as a group generated by reflections. Therefore the
orbit space G/Ad = T/W can be identified with a chosen fundamental
domain in T with respect to the W-action.

(iii) In the case that G is simply connected and in terms of Lie algebra
terminology, one usually describes a chosen fundamental domain as those
points in the Lie algebra of T (i.e., Cartan subalgebra of g) which satisfy the
following inequalities, namely,

afx)>0,j=1,---,r and B(x) <1,

where {a;;j =1, - -, r} are the system of simple roots of g, and g is the
highest root of g. Therefore the orbit space G/ Ad with the metric of orbital
distance is isomorphic to the above flat piece of polyhedron called Cartan
polyhedron.

@iv) Let =* = {a} be the system of positive roots of g. Then the volume
function v(x) = volume of the orbit G(x) is given as follows:

o(x) =c- ]I sin?a(x),
a€EZY

where C is a fixed constant depending on the total volume of G.
Example. Suppose G = SU(3) and T = {diag(e*™, >, ¢*"%); @, + 4,
+ 8; = 0}. Then the Cartan subalgebra is a 2-dimensional vector space
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parametrized by (8,, 8,, ;) with condition 6, + 8, + 8, = 0 and =% = {(4,
— 8y, (0, — 05), (6, — 05)}. Therefore the orbit space SU(3)/Ad can be
geometrically identified with the following regular triangle:

@, +6,+6,=0)

A — —
Ny 0,-6,=0
O\

FiG. 1

Let d(x),j = 1, 2, 3, be respectively the distance of x to its three sides. Then
the volume function ©(x) = ¢ - II sin? d(x). (di(x) = 7 — (6; — 8;)(x) and
hence sin? dy(x) = sin¥(8, — 65)(x).)

The above geometric structure of conjugacy classes is of basic importance
in the classical Lie group theory. In the case of simply connected compact
symmetric spaces G/ K, one has the following generalization on the geometry
of X-orbits which is essentially a reformulation of some results known to E.
Cartan.

Let G/ K be a given simply connected compact symmetric space. Then the
geometry of orbit structure of the K-action on G/K can be concisely
described as follows:

(i) Let K(xy) be a principal orbit of the above K-action on G/ K. Then the
exponential of the space of all normal vectors of K(xg) at x, forms a flat
totally geodesic subtorus which intersects every K-orbit. Such tori are maximal
among all flat totally geodesic subtori of G/ K and hence called maximal tori
of G/K. All maximal tori of G/K are conjugate under the action of G, and
their rank is called the rank of the symmetric space G/ K.

(ii) For each fixed maximal torus 7 of G/K, there is an action of group
generated by reflections with respect to restricted roots of G/K such that
T/W’' = K\ G/K. Therefore the orbit space K\ G/K with the metric of
orbital distance can be identified with a flat piece bounded by suitable
hyperplanes.
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(iii) Again, the volume function v(x) = volume of the principal orbit K{(x)
is given by

o(x) = ¢ []|sin a(x)),
where a runs through the system of restricted roots of the pair (G, K).

We refer to [1], [2}, [4] for more detail discussion of the above basic
important fact of the geometry of symmetric spaces. For the purpose of this
paper, we shall only need the following explicit descriptions for the special
cases of SU(3)/SO(3), SU(6)/ Sp(3) and Eg/ F,.

(i) The metrics of orbital distance of the above three symmetric space are
the same as that of SU(3) which can be identified with a flat regular triangle
of height 7.

(i) The volume function v(x) for the following four symmetric spaces:
SU3)/S0(3), SU3), SU(6)/ Sp(3) and E¢/ F, are respectively

o(x) = ¢-[sind)(x) - sindy(x) - sin d(x)]*, k=1,2,4,38.
Let A be the regular triangle in (x, y)-plane given as follows:

A={(xy):y>0,V3x +y <7 and -V3x +y <w}.
Y&

B(0, m)

r

C /3, 0) 0 AmR3,0) X
" Fic. 2
Following the formulation of [4], one may define a new metric on A with
ds® = v(x,y)*- (dx + dv?) where v(x, y) is the volume function of G/ K 5 A,
namely,

o(x,y) =c-[sind, sind,-sind;]*, k=1,2,4,8
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for G/ K = SU@3)/SO(@3), SU?3), SU(6)/ Sp(3) and E/ F, respectively. Then
it is not difficult to see that the length of a curve in A always equals the
volume of its inverse image in G/ K, geodesics in A correspond to K-invariant
codimension-one minimal submanifolds in G/K; and “closed” geodesics
correspond to closed K-invariant codimension-one minimal submanifolds in
G/ K. In each of the case k = 1, 2, 4, 8 we shall prove in §3 that there exists
at least one regularly embedded closed geodesic with respect to the above
modified metric on A. Therefore one has the following nice examples of
K-invariant closed codimension-one minimal submanifolds in the above four
symmetric spaces.
Theorem 1. In the symmetric spaces
G/K = SU(3)/S0(3), SU(3), SU(6)/Sp(3) or E,/F,

there exists an K-invariant closed codimension-one minimal submanifold of the
type

1 SO(3) 1 SU(3) 1 Sp(3) rS! Fy
S X( z2 )’S X( T2 )’S X(sp(lf)o 5 ><(Sl>in(8))

respectively. ;
Corollary. In the symmetric spaces SU(3), SU(6) or E, there exists a closed
codimension-one minimal submanifold of the type

St ( SO(3) x 50(3)),s1 » ( Sp(3) X Sp(3))orsl x (F4 x F)

z3 Sp(1)° Spin(8)

respectively.

Proof. They are respectively the inverse images of those closed codimen-
sion-one submanifolds with respect to the following fibrations with isometric
fibres:

SU@3) - SU(3)/S0(3), SU(6)— SU(6)/Sp(3), E¢— E¢/F,.
Remark. The above example of minimal submanifold of the type S' x

(F, X F,/Spin(8)) in E; is so far the only known example of codimension-one
closed minimal submanifolds in Eg.

3. The proof of existence of periodic solutions for certain
specific ordinary differential equations
In this section we shall prove the existence of a nice periodic solution of the
geodesic equation on A with the above conformally modified metric ds? = v?
- (dx* + ay?). In view of the symmetries of (A, ds?) with respect to the three
bisectors, one simple-minded way of constructing a periodic solution will be
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to seek a geodesic arc which is perpendicular to two bisectors (see Fig. 2, as
indicated by the solid arc), and then it is easy to obtain a closed geodesic by
reflections with respect to the three bisectors. Therefore we shall carefully
investigate the behavior of those geodesics in the domain AODA perpendicu-
lar to OD. From the point of view of differential equations we shall study
solutions of the following second order equation with given initial conditions,
namely,

) _ k(1 + y?)
sin y(cos y + cos V3x )
- (cos 2y + cos y cos V3x +V3 y’sin V3x siny),
»O) =A 0<A<T, y(©O) =0

As usual, one may consider the above equation as a system of first order
equations: dy/dx = p, dp/dx = f(x,y, p) with y(0) = A, p(0) = 0. Let , be
the following domain in (x, y, p)-space:

7 x
Q = {(x,y,p):x) 0,e <y <§—W,O<p <3}.

Let y = ¢(x,A), p = ¢'(x, \) be the unique solution satisfying the above
initial condition which is parametrized by A. We shall study those solution
curves vy, in £, whose projections on (x, y)-plane, namely {¥,: y = ¢(x, M)},
intersects the boundary line y = /3 — x/V3 . Observe that f(x, y, p) is an
everywhere positive function on €,, namely, for each given ¢ < A <=/3,
¢"(x,A) > 0 and ¢’(x, A) > 0. Therefore there are only the following two
possibilities for the boundary behavior of {v,}: either the slope p = ¢'(x, N)
reaches the bound 3 before the curve ¥, interests AD, or p=¢(x, ) <3and
¥, intersects AD. In the later case, we shall denote the coordinates of the
point of intersection by x,, y,, and its slope by p,.

Theorem 2. For each of the four cases k = 1, 2, 4, 8, there exists a suitable
initial value N, say A, Ay, As, A, respectively, such that ¥, intersects AD and
= V3,i.e., Y, intersects AD perpendicularly.

" Proof. (i) In view of the fact that f(x, y, p) has a factor of siny in the
denominator, the value of f(x,y, p) becomes rather large when y gets small.
Therefore for small initial value A, the curve ¥, rapidly turns upward and
hence the slope p = ¢(x, A) will reach the bound 3 before ¥, intersects AD.
We shall choose and then fix such a sufficiently small ¢ > 0. On the other
hand, for an initial value A very close to #/3, ¥, is simply a very short
segment slightly bending upward. Hence ¢'(x, A) is small, and ¥, intersects
AD with an angle slightly larger than /6.
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(ii) Let A be the set of those Ay, € < Ay < 7/3, such that ¥, intersects AD,
and 0 < ¢'(x,N) < 5/2foraliAg < A <w/3and ¢(x,\) <7/3 — x/V3 .1t
follows from the continuous dependence of solutions with respect to the
parameter A that A is a closed interval [a, w /3] properly contained in [e, 7 /3].
Suppose p, > V3. Then it follows again from the continuity of p, with
respect to A € A that there exists a A € A with p, = V3 and hence a
perpendicular geodesic arc between OD and AD.

(iii) Suppose that p, < V3 . Then it follows from the usual estimate that

}¢(x’ >‘) - ¢(x’ a)l < |>‘ - al : eZMx’
l¢'(x, A) = ¢'(x, a)l <A —aq- ezMx’ :
where M is the Lipschitz constant for f(x,y,p) in ©, and a, A € ¢, 7/3],
y = &(x,\) <7/3 — xV3 . Therefore there exists a 8 > 0 such that all A in
the open interval (a — 8, a + 8) belong to A which is a contradiction to the
fact that a is a boundary point of A. Hence p, must be >V3, and this
completes the proof of Theorem 2.

Concluding remarks. (i) Following the basic idea in the proof of existence
in Theorem 2, it is not difficult to use computor to carry out numerical
estimate for the approximate value of initial values A}, Ay, A5, A, for the four
cases corresponding to k = 1, 2, 3, 4. Their approximate values are as fol-
lows:

A = 0399, A,=0566 A,=0699, A,=0.79.

(i) Let S3 ! be the unit sphere of R = R* ® R* ® R”, and G = 0(n) X
0(n) X O(n) acting orthogonally on R*" via outer direct sum of standard
O(n)-actions on the above three copies of R” separately. Then the principal
orbit type is S”7! X §"~! X §"~!, the orbit space $**~!/G is metrically an
octant of the unit 2-sphere, i.e., {(|x|, |y|, |z]) with |x]* + |»|* + |z]* = 1} and
the volume function v = c- |x|"~'- |p|*"!- |z|" . The above geometric data
are clearly symmetric with respect to its three bisectors. Therefore a similar
proof will show that existence of a closed minimal codimension-one submani-
fold in S ! of the type S! x §"~! x §”~! x §"~! In the special case of
n =2, one obtains a minimal imbedding of 7% = ! X S! x S! x §! into
S>. This example can also be considered as periodic minimal immersion of R*
into S°. One does not know whether there are minimal imbeddings of
codimension-one torus into S™ for m # 3, 5.

(iii) In a succeeding paper, we shall discuss the existence of closed geodes-
ics for the modified orbital metrics which are perpendicular to the boundary
of triangle. Due to the fact that the modified metric becomes degenerate at
the boundary, such discussion is technically more involved. However, the



CLOSED MINIMAL SUBMANIFOLDS 551

reward is also much more because one can then obtain more interesting
examples of codimension-one closed minimal submanifolds in a wider variety

of symmetric spaces. For example, one can obtain a minimal embedding of
S%¥ in E¢/F,.
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